	Questio		Answer	Notes	Marks
-	. (a)		MP1. pitch is <u>frequency</u> ;	allow `it' for pitch	2
			MP2. any one of: • whether sound/note sounds high	ignore references to amplitude, wavelength	
			or low; • high sound has high frequency ORA;	allow vibrates more often / with shorter time period	
				'high pitch has high frequency' ORA gains 2 marks	
	(b)	(i)	ruler / measuring tape; oscilloscope / mobile phone app / data logger / (guitar) tuner;	ignore microphone frequency meter frequency gauge frequency counter	2
		(ii)	dependent – frequency / pitch; independent – length (of pipe);		2
	(c)		any three of: MP1. repeat AND average the readings; MP2. (measure a) larger range of values; MP3. (measure some) intermediate values;	_	3
				accept 'measure more values' for 1 mark if NEITHER MP2 nor MP3 awarded	
			MP4. improved precision of a named variable / instrument;	e.g. 'use a cm ruler', 'measure frequency in mHz' etc. ignore references to accuracy	
			MP5. control a named variable (e.g. temperature); MP6. plot a graph of frequency and length; MP7. deal with anomalies;	allow 'blow with controlled apparatus' allow 'plot a graph of the results' allow 'identify anomalies'	
			,	,	

Total 9 marks

Question number	Answer	Notes	Marks
2 a (i)	0.28 0.37	(both for 1 mark)	1
(ii)	suitable scales; axes labelled; plotting of second and fifth points ;; line of best fit;	Must use > half width and half height of grid no units on axis labels ignore orientation of graph to nearest ½ square, up to two marks available for this line – allow ecf from candidate's third and fourth points	
	0.70 0.60 0.50 sini 0.40 0.30 0.20 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(iii)	Attempt at gradient of line, seen on graph or in working;	e.g. triangle or equivalent drawn on graph, rise/run	2
	Value in range 1.48 to 1.54;	bald correct answer is 1 mark only	

b	Any two of -		2
	MP1. Idea that value relates to all the data		
	collected;		
	MP2. Idea that method allows for anomalies;	Method checks reliability, anomalies can be	
		seen	
	MP3. Idea that effects of uncertainty/error can	graph is an averaging technique	
	be reduced or accounted for;		
		Ignore comments about accuracy	

(Total for Question 2 = 10 marks)

Question number	Answer	Accept	Reject	Marks
3 (a)	Refraction into glass towards the normal $(r > 0)$;	Accept dotted lines Ignore any reflections		4
	Angle of incidence <u>and</u> angle of refraction both labelled correctly at the same surface;	Ignore a second incorrectly labelled pair		
	Refraction at the lower surface into air away from the normal;			
	Emergent ray parallel to incident ray after correct refraction (by eye);			
	j P			

Question number	Answer	Accept	Reject	Marks
3 (b) (i)	One mark for either sin i or sin r correct;	sin i = 0.866; sin i = 0.8660;		1
	i 60°	$\sin r = 0.559;$ $\sin r = 0.5592;$		
	r 34°	Ignore degree sign		
	sin <i>i</i> 0.87			
	sin <i>r</i> 0.56	Ignore any other values		
(ii)	n = sin i ÷ sin r;	Accept refractive index = sin i ÷sin r		1
(iii)	Two marks for correct answer Refractive index = 1.55;; Or Refractive index = 1.6;; Or Refractive index = 1.5;;	Accept for one mark only any other value in the range 1.5 < n < 1.6; Any power of 10 error, e.g. 155.3		2

Question number	Answer	Accept	Reject	Marks
3 (c)	Any three of: MP1 any mention of repetition / take an average of readings; MP2 vary / to obtain more values; MP3 plot a graph of sin i against sin r; OR Calculate/work out/ find n; MP4 find gradient of graph; OR Calculate average of n; MP5 sensible experimental precaution / improvement to method (e.g. mark lines on paper, thinner beam, fix block firmly in position, remove anomalies, sharper pencil, use a more precise protractor e.g. ½0);	Ignore reference to critical angle Ignore second glass block Ignore different colours		3

Total 11 marks

	estion mber	Answer	Notes	Marks
4 (a	a) (i)	set-up showing any two from- clear indication of equipment needed; correct refraction at one surface of glass block shown; protractor shown in use;	ray-box or pins Allow ruler for apparent depth method	2
	(ii)	angle of incidence; angle of refraction;	Allow apparent depth method, i.e. real depth; apparent depth;	2
	(iii)	OR critical angle; idea of grazing emergence; find sin i and sin r; refractive index is the ratio of sines; OR	Accept for two marks (n =) sin i/sin r (n =) 1/ sin c graph of sin i vs sin r	2
		find sin c; refractive index is 1/ sin c;	Allow refractive index = real depth ÷ apparent depth for two marks	
(b	o) (i)	Diagram – reflection at first back surface; reflection at second back surface;	judge by eyestraightness of ray and correctness of angleemergent ray parallel to incident ray	2
	(ii)	Refracted / slows down / wavelength decreases	Ignore: direction change ideas it does nothing / nothing happens	1

Total 9 marks

Question number	Answer	Notes	Marks
5 (a)	cooking – micro(waves) OR infrared (waves);	if more than one example given for each use then reject mark if any incorrect	3
	treating cancer – ultraviolet OR x-rays OR gamma (rays);		
	identifying broken bones - x-rays;		
(b)	C - the same speed;		1
(c) (i)	drawn ray shows refraction in the correct direction (downwards) at both surfaces; drawn ray is above yellow ray and diverges from it (if ray had entered at the original point);	judge by eye ignore arrows and labels dependent on previous	2
		allow if ray drawn enters parallel to original ray	
(ii)	A- black;		1

Total 7 marks

Question number	Answer		Notes	Marks
6 (a)	B;		notiness to the second	1
(b) (i)	MP1. Axes labelled with units; MP2. Correct scales (to occupy at least ¼ or area of the graph and in sensible interval MP3. Plotting; MP4. Plotting; MP5. straight line of best fit which extends given data points;	ls);	 ignore orientation of graph scale intervals on axes should be 2 or 5 or 10 points should be less than 0.5 sq in diameter -1 each incorrect plot to max of -2 tolerance = +/- ½ square if zero is not included, then line should go through all points except 3rd or 4th 	5
	Distance in m	Time in ms	if zero included, look for balance of points	
	0.62	1.8	balance of points	
	0.80	2.4		
	1.00	3.0		
	1.20 Tive (ms) 1.38	4.2		

(ii)	Attempt to find slope or gradient of line; AND evaluation of value; matching unit; e.g. = 0.6/0.0018 = 333 m/s	Δ seen or two lines from same axis seen or rise/run seen value in range of 310-350 allow 0.333 km/s 0.333 m/ms	3
(iii)	Any one specific variable from the experiment; e.g. hitting the block in the same place Use the same microphone/timer/wires Ensure there is no 'hammer bounce'	These must be specific to the experiment Accept same temperature humidity density draughts force block	1
(iv)	Any 2 suggestions from MP1. repeat the time readings (for each distance); MP2. measure the distance to the sensor of the microphone; MP3. use wider range of distance readings (<0.62 or >1.38); MP4. use intermediate distances (between points);	ignore • 'keep everything the same' • use control variables • repeat experiment ignore imprecise suggestions e.g. • 'be careful with timer' • 'change the distance'	2

(Total for Question 6 = 12 marks)

Question number	Answer	Notes	Marks
7 (a)	standard definition of wavelength; e. • distance between two points on a wave/ two peaks/ two troughs • distance between each wavefront • distance travelled by wave in one time period	allow: from clear diagram crest for peak	1
	distance travelled by wave in one time period	 ignore: 'the length of a wave' 'distance taken for 1 cycle' distance between one wave and the next one 	
7 (bi)	Speed of wave = frequency x wavelength;	allow: in any rearrangement $v = f.\lambda$	1
(bii)	substitution into any form of the equation; evaluation;		
	e. $3(m/s) = 1.5(Hz) \times \lambda$ $(\lambda) = 2(m);$	accept for 1 mark 3 1.5	2

Question number	Answer	Notes	Marks
7 (ci)	Diffraction; And one of The incoming wave spreads out at the gap; The energy carried by the wave spreads out;	allow: diffraction seen in (cii) recognisable spelling for 'diffraction' ignore: the wave gets bigger wave is bent (wavefront is) curved	2
7 (cii)	idea that (diffraction only apparent when) λ and size of gap comparable/RA; wavelength of light is very small / smaller than water waves /smaller than the gap;	Allow RA	2
		Total	9

Question number	Answer	Notes	Marks
8 (a)	idea that higher frequency gives higher pitch;	allow reverse argument condone idea of proportionality / linearity	1
(b) (i)	(wave) speed = frequency × wavelength	allow abbreviation, e. $v = f \times \lambda$ or rearrangements	1
(ii)	substitution into correctly rearranged equation; evaluation; e. (v =) 340 / 160 (v =) 2.1 (m)	allow 2.125, 2.12, 2.13 or 2 (if supported)	2
(c) (i)	straight line of best fit drawn within indicated area; speed of sound in m/s 345 340 335 -20 -15 -10 -5 0 5 10 15 20 temperature in °C	line does not need to be extended beyond data range for this mark	1
(ii)	line of best fit extended to 20°C; student's own value from graph ± half a square;		2

(d)	any 2 from: MP1.speed (of sound) decreases (with temperature); MP2.frequency is constant;	allow 'sound slows down' ignore references to particle speed	2
	MP3. so wavelength decreases (with temperature);	allow λ is smaller	

Total 9 marks